Sports News

Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest heat dome

  • White, R. H. et al. The unprecedented Pacific Northwest heatwave of June 2021. Nat. Commun. 14, 727 (2023).

    Article 
    CAS 

    Google Scholar
     

  • BCCO report, Extreme Heat and Human Mortality: A Review of Heat-Related Deaths in B.C. in Summer 2021, British Columbia Coroners Office https://www2.gov.bc.ca/assets/gov/birth-adoption-death-marriage-and-divorce/deaths/coroners-service/death-review-panel/extreme_heat_death_review_panel_report.pdf, (accessed 2 September 2 2022).

  • Multnomah County, (2021). https://www.multco.us/multnomah-county/news/county-working-preliminary-report-june-2021-heat-wave-deaths-focusing-housing (Accessed 11 September 2022)

  • Washington State Department of Health, 2021. https://doh.wa.gov/emergencies/be-prepared-be-safe/severe-weather-and-natural-disasters/hot-weather-safety/heat-wave-2021 (Accessed 11 September 2022).

  • McKinnon, K. A. & Simpson, I. R. How unexpected was the 2021 Pacific Northwest heatwave? Geophys. Res. Lett. 49, e2022GL100380 (2022).

    Article 

    Google Scholar
     

  • Thompson, V. et al. The 2021 western North America heat wave among the most extreme events ever recorded globally. Sci. Adv. 8, eabm6860 (2022).

    Article 

    Google Scholar
     

  • Philip, S. Y. et al. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Earth Syst. Dynam. 13, 1689–1713 (2022)

  • Wehrli, K. et al. The ExtremeX global climate model experiment: investigating thermodynamic and dynamic processes contributing to weather and climate extremes. Earth Syst. Dyn. 13, 1167–1196 (2022).

    Article 

    Google Scholar
     

  • Kochtubajda, B. & Burrows, W. R. Cloud-to-Ground Lightning in Canada: 20 Years of CLDN Data. Atmos. Ocean 58, 316–332 (2020).

    Article 

    Google Scholar
     

  • Schroeder, M. J. Critical fire weather patterns in the conterminous United States. Office of Meteorological Operations. Silver Spring, Maryland, USA (1969)

  • Flannigan, M. D. & Harrington, J. B. A study of the relation of meteorological variables to monthly provincial area burned by wildfires in Canada (1953–80). J. Appl. Meteor. 27, 441–452 (1988).

    Article 

    Google Scholar
     

  • Skinner, W. R. et al. A 500 hPa synoptic wildland fire climatology for large Canadian forest fires, 1959–1996. Theor. Appl. Climatol. 71, 157–169 (2002).

    Article 

    Google Scholar
     

  • Gedalof, Z. E., Peterson, D. L. & Mantua, N. J. Atmospheric, climatic, and ecological controls on extreme wildfire years in the northwestern United States. Ecol. Appl. 15, 154–174 (2005).

    Article 

    Google Scholar
     

  • Zhong, S. et al. Synoptic weather patterns for large wildfires in the northwestern United States—a climatological analysis using three classification methods. Theor. Appl. Climatol. 141, 1057–1073 (2020).

    Article 

    Google Scholar
     

  • Jain, P. & Flannigan, M. The relationship between the polar jet stream and extreme wildfire events in North America. J. Clim. 34, 6247–6265 (2021).


    Google Scholar
     

  • Hirsch, K. G. & Flannigan, M. D., November. Meteorological and fire behavior characteristics of the 1989 fire season in Manitoba, Canada. In Proceedings of International Conference on Forest Fire Research, Nov (pp. 19–22) (1990).

  • Sharma, A. R., Jain, P., Abatzoglou, J. T. & Flannigan, M. Persistent positive anomalies in geopotential heights promote wildfires in western North America. J. Clim. 35, 2867–2884 (2022).

  • Neal, E., Huang, C. S. & Nakamura, N. The 2021 Pacific Northwest heat wave and associated blocking: Meteorology and the role of an upstream cyclone as a diabatic source of wave activity. Geophys. Res. Lett. 49, e2021GL097699 (2022).

    Article 

    Google Scholar
     

  • Osman, M., Zaitchik, B. F. & Winstead, N. S. Cascading drought‐heat dynamics during the 2021 Southwest United States Heatwave. Geophys. Res. Lett. 49, e2022GL099265 (2022).

    Article 

    Google Scholar
     

  • Mo, R., Lin, H. & Vitart, F. An anomalous warm-season trans-Pacific atmospheric river linked to the 2021 western North America heatwave. Commun. Earth Environ. 3, 1–12 (2022).

    Article 

    Google Scholar
     

  • Christidis, N. & Stott, P. A. Changes in the geopotential height at 500 hPa under the influence of external climatic forcings. Geophys. Res. Lett. 42, 10–798 (2015).

    Article 

    Google Scholar
     

  • Dowdy, A. J., Mills, G. A., Finkele, K. & de Groot, W. Index sensitivity analysis applied to the Canadian forest fire weather index and the McArthur forest fire danger index. Meteorol. Appl. 17, 298–312 (2010).

    Article 

    Google Scholar
     

  • Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020).

    Article 

    Google Scholar
     

  • Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A. & Westerling, A. L. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).

    Article 

    Google Scholar
     

  • Taylor, S. W. Atmospheric cascades shape wildfire activity and fire management decision spaces across scales− A conceptual framework for fire prediction. Front. Environ. Sci. 8, 527278 (2020).

    Article 

    Google Scholar
     

  • Bloem, S., Cullen, A. C., Mearns, L. O. & Abatzoglou, J. T. The role of international resource sharing arrangements in managing fire in the face of climate change. Fire 5, 88 (2022).

    Article 

    Google Scholar
     

  • Matz, C. J. et al. Health impact analysis of PM2. 5 from wildfire smoke in Canada (2013–2015, 2017–2018). Sci. Total Environ. 725, 138506 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Canadian Forest Service, 2022. Canadian Wildland Fire Evacuation Database. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta. Manuscript in preparation. (Accessed 26 April 2022).

  • Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    Article 

    Google Scholar
     

  • Ellis, T. M., Bowman, D. M., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climate‐driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Francis, J. A. & Vavrus, S. J., Evidence linking Arctic amplification to extreme weather in mid‐latitudes. Geophys. Res. Lett. 39, L06801 (2012).

  • Francis, J. A. & Vavrus, S. J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).

    Article 

    Google Scholar
     

  • Mann, M. E. et al. Influence of anthropogenic climate change on planetary wave resonance and extreme weather events. Sci. Rep. 7, 1–12 (2017).


    Google Scholar
     

  • Blackport, R. & Screen, J. A. Insignificant effect of Arctic amplification on the amplitude of midlatitude atmospheric waves. Sci. Adv. 6, eaay2880 (2020).

    Article 

    Google Scholar
     

  • Dai, A. & Song, M. Little influence of Arctic amplification on mid-latitude climate. Nat. Clim. Change 10, 231–237 (2020).

    Article 

    Google Scholar
     

  • Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. 113, 11770–11775 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Burke, M. et al. The changing risk and burden of wildfire in the United States. Proc. Natl Acad. Sci. 118, e2011048118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hersbach, H. et al. ERA5 hourly data on pressure levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.bd0915c6 (2018b). (Accessed 20 Sept 2022).

  • Dole, R. M. & Gordon, N. D. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Geographical distribution and regional persistence character- istics. Mon. Weather Rev. 111, 1567–1586 (1983).

    Article 

    Google Scholar
     

  • Miller, R. L., Lackmann, G. M. & Robinson, W. A. A new variable-threshold persistent anomaly index: Northern Hemisphere anomalies in the ERA-Interim reanalysis. Mon. Weather Rev. 148, 43–62 (2020).

    Article 

    Google Scholar
     

  • Renwick, J. A. Persistent positive anomalies in the Southern Hemisphere circulation. Mon. Weather Rev. 133, 977–988 (2005).

    Article 

    Google Scholar
     

  • Gibson, P. B. et al. Ridging associated with drought across the western and southwestern United States: Characteristics, trends, and predictability sources. J. Clim. 33, 2485–2508 (2020).

    Article 

    Google Scholar
     

  • Parsons, S., Renwick, J. A. & McDonald, A. J. An assessment of future Southern Hemisphere blocking using CMIP5 projections from four GCMs. J. Clim. 29, 7599–7611 (2016).

    Article 

    Google Scholar
     

  • Diffenbaugh, N. S. Verification of extreme event attribution: Using out-of-sample observations to assess changes in probabilities of unprecedented events. Sci. Adv. 6, eaay2368 (2020).

    Article 

    Google Scholar
     

  • Swain, D. L., Singh, D., Touma, D. & Diffenbaugh, N. S. Attributing extreme events to climate change: a new frontier in a warming world. One Earth 2, 522–527 (2020).

    Article 

    Google Scholar
     

  • Hall, R. J. et al. Generating annual estimates of forest fire disturbance in Canada: the National Burned Area Composite. Int. J. Wildland Fire 29, 878–891 (2020).

    Article 

    Google Scholar
     

  • Eidenshink, J. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).

    Article 

    Google Scholar
     

  • Van Wagner, C. E. Development and Structure of the Canadian Fire Weather Index System. Forestry Technical Report Vol. 35 (Canadian Forestry Service Headquarters, Ottawa, 1987).

  • Lawson, B. D. & Armitage, O. B. Weather guide for the Canadian forest fire danger rating system. (Canadian Forest Service, 2008).

  • Sedano, F. & Randerson, J. T. Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems. Biogeosciences 11, 1309–1353 (2014).

    Article 

    Google Scholar
     

  • Williams, A. P. et al. Correlations between components of the water balance and burned area reveal new insights for predicting forest fire area in the southwest United States. Int. J. Wildland Fire 24, 14–26 (2014).

    Article 

    Google Scholar
     

  • Hersbach, H. et al. ERA5 hourly data on single levels from 1959 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.adbb2d47 (2018a). (Accessed 20 Sept 2022).

  • Alduchov, O. A. & Eskridge, R. E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 35, 601–609 (1996).

    Article 

    Google Scholar
     

  • McElhinny, M., Beckers, J. F., Hanes, C., Flannigan, M. & Jain, P. A high-resolution reanalysis of global fire weather from 1979 to 2018–overwintering the Drought Code. Earth Syst. Sci. Data 12, 1823–1833 (2020).

    Article 

    Google Scholar
     

  • Van Wagner, C. E. A Method of Computing Fine Fuel Moisture Content Throughout the Diurnal Cycle Information Report PS-X-69 (Canadian Forestry Service, 1977). https://www.nature.com/articles/s41586-024-07028-5.

  • De Frenne, P. et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Change Biol. 27, 2279–2297 (2021).

    Article 

    Google Scholar
     

  • Wang, X. et al. cffdrs: an R package for the Canadian Forest Fire Danger Rating System. Ecol. Process 6, 5 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Magnussen, S. & Taylor, S. W. Inter-and intra-annual profiles of fire regimes in the managed forests of Canada and implications for resource sharing. Int. J. Wildland Fire 21, 328–341 (2012).

    Article 

    Google Scholar
     

  • Hansen, M., Song, X. Vegetation Continuous Fields (VCF) Yearly Global 0.05 Deg [Data set]. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/VCF/VCF5KYR.001 (2018) Accessed 8 June 2023.

  • Youssouf, H. et al. Quantifying wildfires exposure for investigating health-related effects. Atmos. Environ. 97, 239–251 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Gupta, P., Remer, L. A., Patadia, F., Levy, R. C. & Christopher, S. A. High-resolution gridded level 3 aerosol optical depth data from modis. Remote Sensing 12, 2847 (2020).

    Article 

    Google Scholar
     

  • Krstic, N. & Henderson, S. B. Use of MODIS data to assess atmospheric aerosol before, during, and after community evacuations related to wildfire smoke. Remote Sens. Environ. 166, 1–7 (2015).

    Article 

    Google Scholar
     

  • Center for International Earth Science Information Network – CIESIN – Columbia University. Gridded Population of the World, Version 4.11 (GPWv4): Population Count, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4JW8BX5 (2018). (Accessed 5 April 2022).

  • Randles, C. A. et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 30, 6823–6850 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    Leave a Reply

    Back to top button